Package: bqror 1.4.0
bqror: Bayesian Quantile Regression for Ordinal Models
Package provides functions for estimating Bayesian quantile regression with ordinal outcomes, computing the covariate effects, model comparison measures, and inefficiency factor. The generic ordinal model with 3 or more outcomes (labeled OR1 model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled OR2 model) is estimated using Gibbs sampling only. For each model framework, there is a specific function for estimation. The summary output produces estimates for regression quantiles and two measures of model comparison — log of marginal likelihood and Deviance Information Criterion (DIC). The package also has specific functions for computing the covariate effects and other functions that aids either the estimation or inference in quantile ordinal models. Rahman, M. A. (2016).“Bayesian Quantile Regression for Ordinal Models.” Bayesian Analysis, II(I): 1-24 <doi:10.1214/15-BA939>. Yu, K., and Moyeed, R. A. (2001). “Bayesian Quantile Regression.” Statistics and Probability Letters, 54(4): 437–447 <doi:10.1016/S0167-7152(01)00124-9>. Koenker, R., and Bassett, G. (1978).“Regression Quantiles.” Econometrica, 46(1): 33-50 <doi:10.2307/1913643>. Chib, S. (1995). “Marginal likelihood from the Gibbs output.” Journal of the American Statistical Association, 90(432):1313–1321, 1995. <doi:10.1080/01621459.1995.10476635>. Chib, S., and Jeliazkov, I. (2001). “Marginal likelihood from the Metropolis-Hastings output.” Journal of the American Statistical Association, 96(453):270–281, 2001. <doi:10.1198/016214501750332848>.
Authors:
bqror_1.4.0.tar.gz
bqror_1.4.0.zip(r-4.5)bqror_1.4.0.zip(r-4.4)bqror_1.4.0.zip(r-4.3)
bqror_1.4.0.tgz(r-4.4-any)bqror_1.4.0.tgz(r-4.3-any)
bqror_1.4.0.tar.gz(r-4.5-noble)bqror_1.4.0.tar.gz(r-4.4-noble)
bqror_1.4.0.tgz(r-4.4-emscripten)bqror_1.4.0.tgz(r-4.3-emscripten)
bqror.pdf |bqror.html✨
bqror/json (API)
# Install 'bqror' in R: |
install.packages('bqror', repos = c('https://prajual.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/prajual/bqror/issues
- Educational_Attainment - Educational Attainment study based on data from the National Longitudinal Study of Youth (NLSY, 1979) survey.
- Policy_Opinion - Data contains public opinion on the proposal to raise federal income taxes for couples
- data25j3 - Simulated data from OR2 model for p = 0.25
- data25j4 - Simulated data from OR1 model for p = 0.25
- data50j3 - Simulated data from OR2 model for p = 0.5
- data50j4 - Simulated data from OR1 model for p = 0.5
- data75j3 - Simulated data from OR2 model for p = 0.75
- data75j4 - Simulated data from OR1 model for p = 0.75
Last updated 2 years agofrom:be425e5060. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-win | NOTE | Nov 23 2024 |
R-4.5-linux | NOTE | Nov 23 2024 |
R-4.4-win | NOTE | Nov 23 2024 |
R-4.4-mac | NOTE | Nov 23 2024 |
R-4.3-win | NOTE | Nov 23 2024 |
R-4.3-mac | NOTE | Nov 23 2024 |
Exports:alcdfalcdfstdcovEffectOR1covEffectOR2devianceOR1devianceOR2drawbetaOR1drawbetaOR2drawdeltaOR1drawlatentOR1drawlatentOR2drawnuOR2drawsigmaOR2drawwOR1infactorOR1infactorOR2logMargLikeOR1logMargLikeOR2qrminfundtheoremqrnegLogLikensumOR1qrnegLogLikeOR2quantregOR1quantregOR2rndald
Dependencies:clicolorspacecpp11crayondplyrellipsefansifarverfastclusterforcatsgenericsGGallyggplot2ggstatsGIGrvggluegtablehmsinvgammaisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmeNPflowpatchworkpheatmappillarpkgconfigplyrpracmaprettyunitsprogresspurrrR6RColorBrewerRcppRcppArmadilloreshape2rlangscalesstringistringrtibbletidyrtidyselecttruncnormutf8vctrsviridisLitewithr